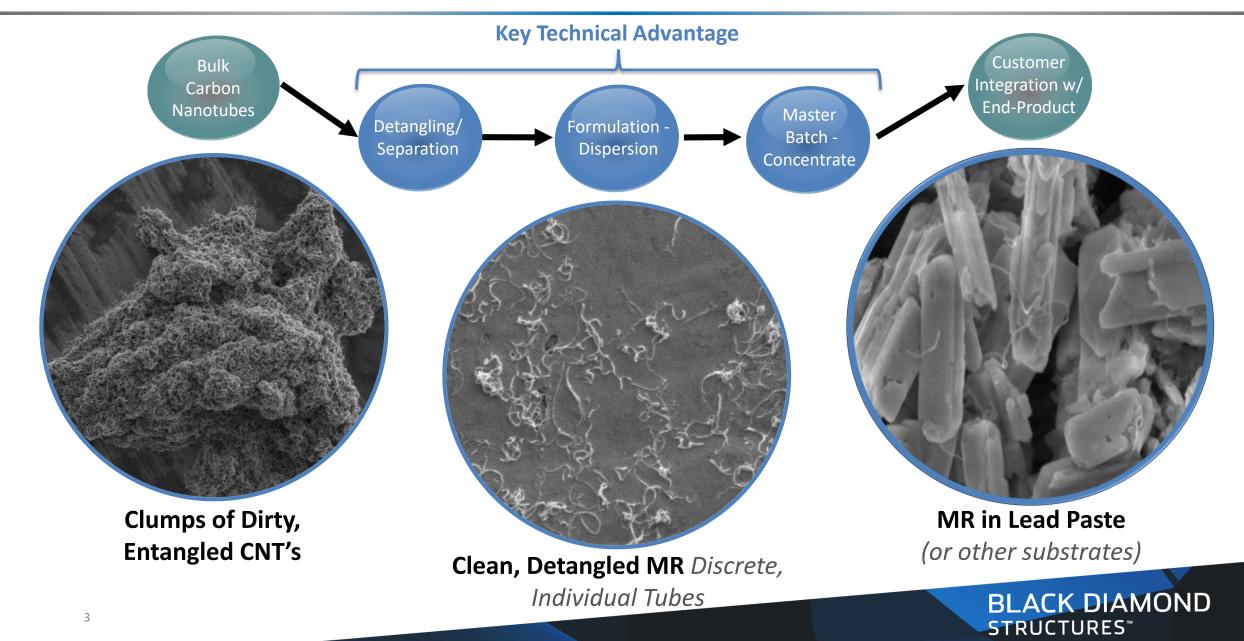

MOLECULAR REBAR[®]:

Formulated Discrete Carbon Nanotube (dCNT) Additives

Dr. Jeremy P. Meyers, Steven W. Swogger, Dr. Nanjan Sugumaran, Dr. Paul Everill

Who We Are


Black Diamond Structures is a developer, manufacturer, and marketer of innovative nanomaterial products and solutions based on revolutionary discrete carbon nanotube (dCNT) technology, **MOLECULAR REBAR**[®]

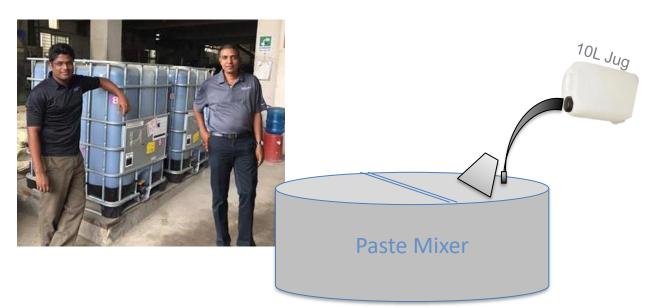
DIAMOND

STRUCTURES

Detangling Traditional CNT into MOLECULAR REBAR

• For carbon compounds to be effective, they must fully integrate with the lead system; they must not simply be "along for the ride"

- For carbon compounds to be effective, they must fully integrate with the lead system; they must not simply be "along for the ride"
- MOLECULAR REBAR[®] products are formulated for this level of paste integration to maximize benefits



- For carbon compounds to be effective, they must fully integrate with the lead system; they must not simply be "along for the ride"
- MOLECULAR REBAR[®] products are formulated for this level of paste integration to maximize benefits
- Material is shipped as a pourable, aqueous liquid which incorporates beautifully with the lead system

- For carbon compounds to be effective, they must fully integrate with the lead system; they must not simply be "along for the ride"
- MOLECULAR REBAR[®] products are formulated for this level of paste integration to maximize benefits
- Material is shipped as a pourable, aqueous liquid which incorporates beautifully with the lead system
- A volume of pasting water is replaced with the MOLECULAR REBAR[®] liquid, so total liquid volume remains fixed.
 - No capital expenditures or modifications to pasting lines required.

- For carbon compounds to be effective, they must fully integrate with the lead system; they must not simply be "along for the ride"
- MOLECULAR REBAR[®] products are formulated for this level of paste integration to maximize benefits
- Material is shipped as a pourable, aqueous liquid which incorporates beautifully with the lead system
- A volume of pasting water is replaced with the MOLECULAR REBAR[®] liquid, so total liquid volume remains fixed.
 - No capital expenditures or modifications to pasting lines required.
- MOLECULAR REBAR[®] have specific affinity for lead oxide allowing them to integrate effectively
 - Carbon poorly integrates into paste mixtures
 - Discrete CNTs associate with lead oxide and are easily cleared from aqueous mixtures

Carbon does not integrate with lead or acid Paste Mixer

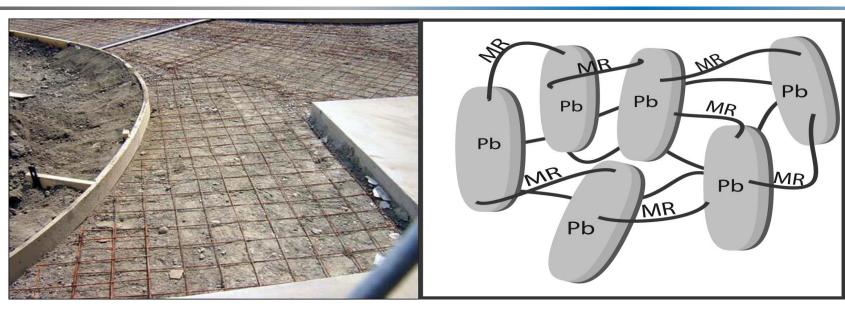
Lead & Dilute Acid

MOLECULAR REBAR[®] integrated into the lead

BLACK DIAMOND

STRUCTURES[™]

10L Jug


MOLECULAR REBAR® Integrate with PbO in H₂O/Acid

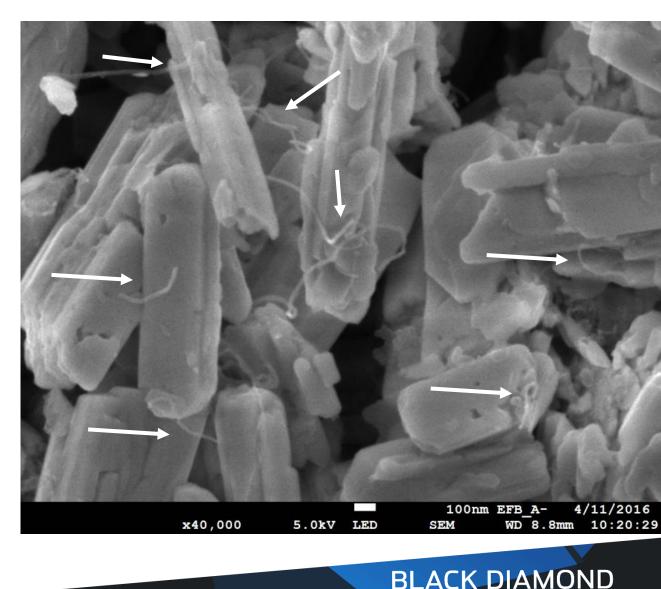
Molecular Rebar® Cleared Homogenous Acid + 10 g Mixture PbO 100% Lead/MR (100%) MR in dilute H₂SO₄ Post Add of PbO 9

- MOLECULAR REBAR[®] uniformly mixes with water and acid in battery paste.
- MR is strongly attracted to the lead as automotive-grade lead oxide is added to mixtures of MR and water or acid
- MR has significant interaction with lead, water, and acid

BLACK DIAMOND

Not Another Carbon: Unique Form & Function

- MR acts a a physical and rheological modifying agent, its form and function are unique from Carbon; "Rebar Effect"
- Benefits of MR are no derived primarily from surface area, hence addition rates at 10% of less of Carbon


- THE		Pb	pb	
	Pb			
A MAN				arbon

- Carbon has an important role in conductivity and is necessary in a lead acid battery
- Its interactions and purpose are different than MR

BLACK DIAMOND

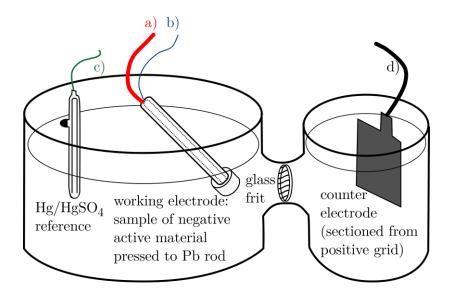
Not Another Carbon: Unique Form & Function

- MR products are formulated for ease of use and incorporation
 - No processing issues or the resulting performance issues (density, plate consistency, etc.)
 - Can be used alongside carbon, expander, other solutions with additional and even corrective benefits.
- MR creates a network of individual nanotubes reinforcing the plates, adding lasting strength and durability

Consistent Benefits of MOLECULAR REBAR® Across Applications

• More Efficient Charging with dCNT

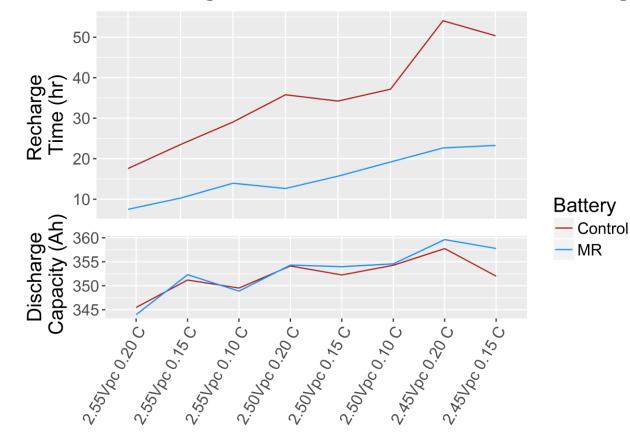
- Reduced Recharge Times
- More Consistent Capacity & Charge Acceptance
- Allows Charging at Higher Rates without Transition to Gassing


Improved Maintenance of the Micro-Structures

- Sustains a more Effective Conversion of Active Material
- Reduces and Suppresses Irreversible Sulfation
- Observed both Chemical and Mechanical Improvement

Finding Transition from Pb Charging to H₂ Evolution

• Linear Sweep Voltammetry:


BLACK DIAMOND

STRUCTURES"

 Pb charging can sustain higher limiting current with MOLECULAR REBAR[®] in NAM paste, either by promoting diffusion or attacking PbSO₄ particles.

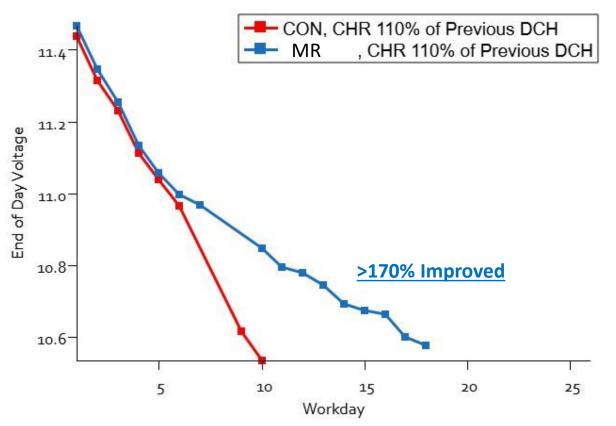
Recharge Time Reduction + Capacity Retention

Significant reductions in recharge time across numerous conditions/application charging conditions

Various V/i Charge Profiles to 115% after C-20 Discharges

Reduction in time versus Control to return 115% of the C20 Capacity of sets of 3ct 6V 500Ah Flooded batteries.

- MR has a major impact on charging from 90% SOC and beyond
- MR prolongs the Constant Current portion of charging
- MR increase the Current in the Constant Voltage portion of charging
 - Even with much faster Ah return the conversion efficiency is high as shown by the maintained capacity.


BLACK DIAMOND

STRUCTURES[™]

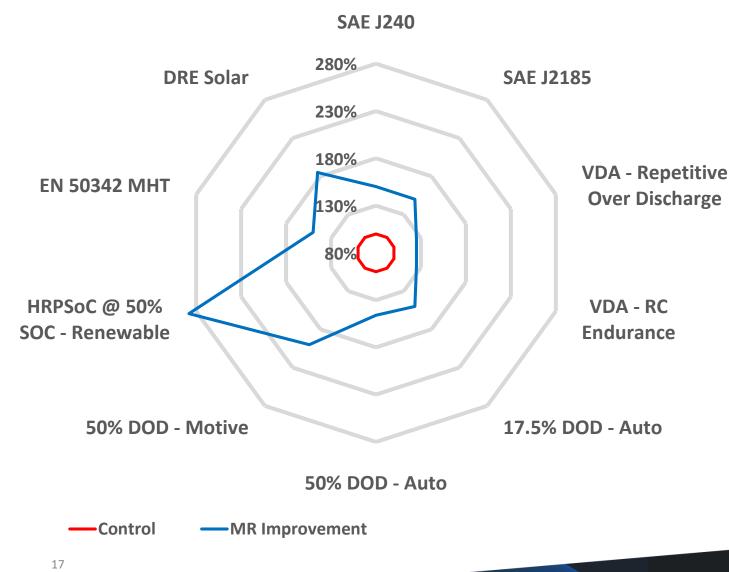
14

Improved Charge Efficiency

Lab Simulation Testing: Fixed Ah Input (110%)

The batteries are discharged for a "workday" using 10 cycles or "trips," each with five 10min discharges followed by a 10min rest, resulting in > 80% DOD over a 10-hour duration. Recharge is the same for all batteries and either 8-hours or 10-hours each workday. 12V 80Ah Flat Plate Batteries

- All batteries charged to 110% of the Ah discharged during the workday cycle; 115% is recommended, simulation intentionally undercharged
- MR batteries converted more of the 110% Ah Input back into useable capacity and 70% more cycles
- MR Improves charge efficiency


More Efficient Charging with MOLECULAR REBAR®

- More Efficient Charging with MOLECULAR REBAR®
 - Reduced Recharge Times
 - More Consistent Capacity & Charge Acceptance
 - Allows Charging at Higher Rates without Transition to Gassing

Preserving Microstructure for Reliable Performance

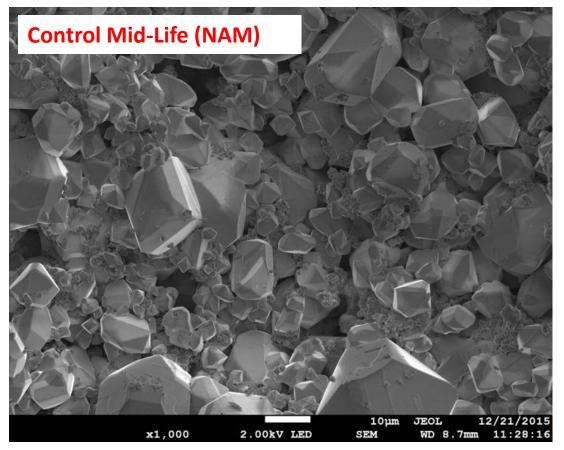
Customer Provided Durability Focused Cycle Tests

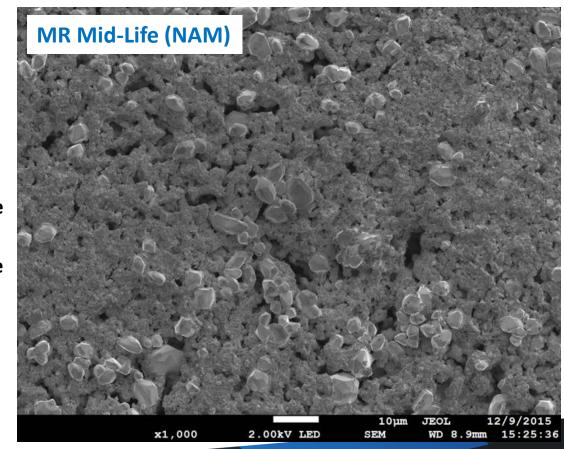
- MR strengthens and maintains the microstructure of the Negative and/or Positive Active Material
- The added Mechanical Integrity & Durability through MR addition can be seen through extended cycle life in many tests by reducing or preventing:

BLACK DIAMOND

- Active Material Shedding
- Active Material Growth
- Sulfation
- Grid Corrosion

Increased Plate Durability

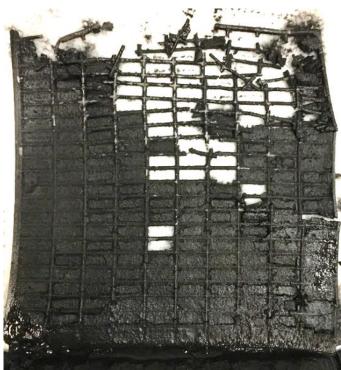

- MR the increase the strength of the active material, reinforcing the lead matrix
- Qualitative and Quantitative tests indicate increased strength of the micro-structure


Retaining Microstructure in PSoC Cycling

• After >4 Months of intensive PSOC cycling:

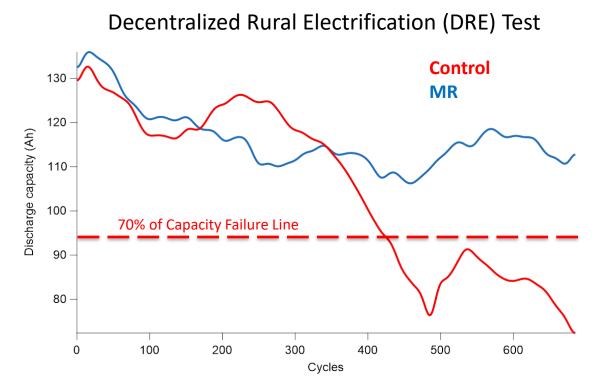
- MR decreases sulfate crystal size and frequency allowing the majority of the plate to remain as active sponge lead
- Plates are noticeably stronger to the touch upon teardown; dCNT strength benefits retained through life

Micrographs at 1000x resolution illustrate MR's ability to ensure uniform NAM crystal structure even after > 4 months of cycling



BLACK DIAMOND STRUCTURES[™]

Retained Structure at End of HOT Cycle Life

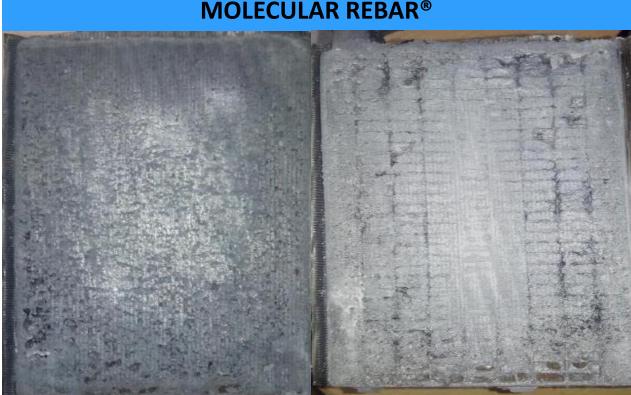

- SAE-J240 @ 70C = High-temperature, abusive study mimicking automotive battery operating conditions
- Altered Failure Modes:
 - Control batteries failed by NAM growth, shorting, PAM collapse
 - Batteries with MR completed 60% more cycles and the active material is better intact with less corrosion
 Control Positive
 MR Positive

Synergy of Efficient Charging + Reliable Microstructure

Step	Mode	Protocol	Cycles	Potential Failure			
1	Preparation	1) Fully charge the battery					
		2) Discharge at C/10 A till 10.5V					
2	Undercharge cycles	1) Charge at C/10A till 14.1V		Acid stratification			
		2) Rest for 3 hrs	5	Sulphate growth			
		3) Discharge at C/10A till 10.5V	5				
		4) Rest for 3 hrs		AM shedding			
3 Overc		1) Charge at C/10A till 120% Capacity		Corrosion			
		2) Death fair 2 hins		Active Material loosening			
	Overcharge cycles	2) Rest for 3 hrs		Sulphate growth			
		3) Discharge at C/10A till 10.5V		Active Material shedding			
		4) Rest for 3 hrs		Waterloss			
R	Repeat sequences 2 and 3 until discharge capacity in overcharge cycle drops below 70% of C/10 capacity						

- DRE test replicates failure modes seen in real applications
 - Water loss, corrosion, sulphation, active material shedding
- Each cycle lasts ~24 hours
- MR is taking in more Ah per charge without increasing water loss
- MR delays long-term failure modes, extends lifetime >50%
 - Control fails at 425 cycles. MR capacity has stabilized after initial break-in and continues to cycle without degradation beyond 550 cycles

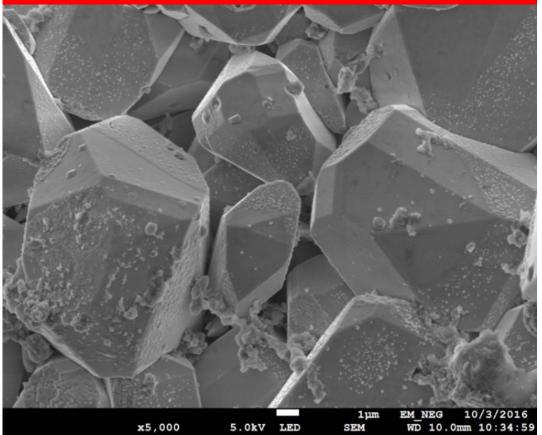
BLACK DIAMOND


MR Suppress Sulfation, Maintain Capacity

• DRE Test (Negative Plate Tear Down Plates)

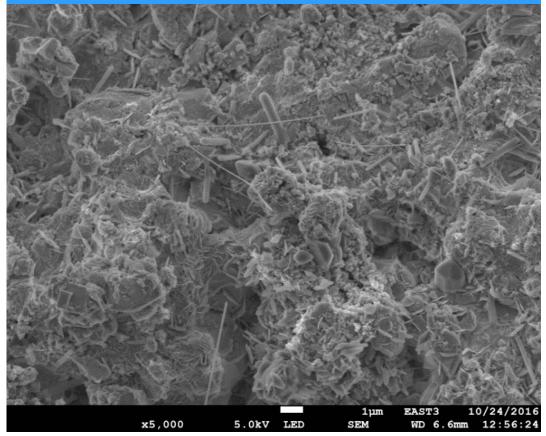
Control

- Non-uniform material utilization
- Material soft and puffing/falling out
- Heavily sulfated surface
- Large insulative Sulphate crystals



BLACK DIAMOND

- Smaller and uniformly sized crystals
- Shiny surface, plate still usable
- No sulfate present on surface


MR Preserve Microstructure throughout Life

- Non-uniform material size
- Major lead sulfate crystal growth

- More uniform material size
- Minimal lead sulfate crystal growth

BLACK DIAMOND

MOLECULAR REBAR® Summary

- MOLECULAR REBAR[®] products made of dCNT are designed to be easily be incorporated into industrial pasting lines with minimal to no changes to recipes or equipment.
- MOLECULAR REBAR[®] Provide Similar Benefits Across Applications
 - More Efficient Charging with MOLECULAR REBAR[®]
 - Reduced Recharge Times
 - More Consistent Capacity & Charge Acceptance
 - Improved Maintenance of the Micro-Structures in PAM and NAM
 - Sustains a more Effective Conversion of Active Material
 - Reduces and Suppresses Irreversible Sulfation