Origin of the DCA Memory Effect

The Role of the Pb²⁺/Organic Buffering Theory

When We Last Spoke...

- We defined the concept of "DCA Memory"
 - DCA magnitude is inextricably linked to the process which came before \rightarrow the battery "remembers" what it just did
 - Measuring DCA post-discharge (ex. I_D) typically provide a 3-5X higher value than measuring post-charge (ex. I_C)
- We suggested 3 theories to explain "DCA memory:
 - 1. Local Electrolyte Effect
 - Transient perturbations in SG following DCH (low SG) or CHR (high SG) provide a basis for hi/lo conductivity/current
 - 2. Lead Sulfate Ripening

- Continued in #515
- A subset of lead sulfate crystals reach a critical surface tension/energy which stabilizes them against dissolution, leads to gradually decreasing supply of Pb²⁺, and decreases charge current, particularly in Run-In
- 3. A Perturbation of Pb²⁺ Diffusion Kinetics
 - [Pb²⁺] availability defines charge rate, but polymer-dynamicsdefined release of Pb²⁺ from battery organics at high acid/salt (high SoC, or CHR-1st protocols) or low acid/salt (low SoC, or DCH-1st protocols) concentrations could explain the enhanced availability of Pb²⁺ following DCH

One again, which process do you believe accounts for DCA memory in lead batteries?

BLACK DIAMOND

STRUCTURES[™]

Perturbation of Pb²⁺ Diffusion as Memory Driver

THEORY

SO₄

Pb

Transiently high SG

Morganic ● Pb²⁺

Pb²⁺ supersaturation, locally driven by low SG/high Pb²⁺ solubility, may be extended by interaction with organic expander following discharge (locally low SG, high Pb²⁺ solubility = organic adsorption) not following charge (locally high SG, lower Pb²⁺ solubility = no organic adsorption)

STRUCTURES[™]

Theoretical Calculations of Feasibility

- ~52.0 μmol of Pb²⁺ should be consumed in a single DCA event (10 s CHR at 1A/Ah), per Ah of rated capacity
 - 10 s pulse of 1 A/Ah = 10 As/Ah = 2.8 mAh/Ah of charge
 - Pb²⁺ delivers 53.2 Ah/mol
 - 2.8 mAh/Ah / 53.2 Ah/mol = 52.0 μ mol of Pb²⁺ /Ah
- ~7.5 nmol of Pb²⁺ are available in NAM electrolyte due to solubility, per Ah of rated capacity
 - Equilibrated $PbSO_4$ solubility in a pore electrolyte is ~0.005 mM
 - A high-porous NAM may have pore volume of ~0.15 ml/g, or ~1.5 ml/Ah
 - Amount of Pb^{2+} in pore electrolyte is therefore 1.5 mL/Ah * 0.005 mmol/L = 7.5 nmol of Pb^{2+}/Ah
- ~0.01% of needed Pb²⁺ is available instantly, 99.99% from dissolution, oversaturation, or organic liberation
- 50 wt% of "Pb²⁺ Buffer Capacity" must be provided by the organic to enable this theory
 - ~51.99 µmol Pb²⁺ are missing * 207.2 g/mol Pb/Ah = 10.77 mg Pb²⁺, per Ah of rated capacity
 - $~\sim 20$ mg of organic are deployed in the NAM, per Ah of rated capacity

KEY QUESTION: How much Pb²⁺ does the organic need to support to enable this theory of action?

STRUCTURES"

Ref. + Thanks to Drs Eckhard Karden, Eberhard Meissner (LABAT'20, to be published)

514-1: This theory is :

False

Logically Sound

Novel

Substantiated by my Experience

Worth Further Exploration

Going to Change the Way We Formulate Expander

Go to www.menti.com and use the code 18 78 84 2

514-1: This theory is :

Logically Sound
Novel
Substantiated by my Experience
Worth Further Exploration
Going to Change the Way We Formulate Expander

M Mentimeter

True

True

Mentimeter

For Discussion

- Round table discussion of the theory's logic
- Sharing of personal experience with organics and chemistries
- Experimental suggestions to disprove the hypothesis that organics are incapable of harboring DCA-supporting Pb²⁺ reservoirs for fast implementation only following a discharge
- Open questions:
 - Is there an "optimal" Pb²⁺ absorption?
 - Is the question less about total Pb^{2+} absorption, and more about rates of release/capture?
 - How to measure Pb²⁺ reservoirs in situ?
 - How to promote Pb^{2+} storage and liberation following a charge step (improve I_c)?
 - Can organic chemistries be used to control open/closed dynamics and make them less dependent on battery SoC/[salt]?

BLACK DIAMOND

STRUCTURES[™]

514–2: If you are interested in participating in any future research stemming from this PPT, please write your Name + Email here (Answers Hidden)

Results are hidden

Go to www.menti.com and use the code 18 78 84 2

Mentimeter

M Mentimeter

514–2: If you are interested in participating in any future research stemming from this PPT, please write your Name + Email here (Answers Hidden)

Results are hidden

Perturbation of Pb²⁺ Diffusion as Memory Driver

- Under what condition do Pb²⁺ absorb/desorb?
- Kinetics of release (k_{on}/k_{off})?
- Vary by different organic?

