Negative Active Mass Additives

Types, Effects, and Mechanism

Dr. Paul Everill VP, Research + Development

When We Last Spoke...

• We probed aspects of "Dynamic Charge Acceptance" (DCA)

- A term describing the responsiveness of batteries held at Partial State of Charge to short, intense energy pulses mimicking operation of a start/stop automotive battery
 - Ex. EN 50432-6 DCA Protocol, Run-In DCA

• We investigated "levers" which could manipulate DCA magnitude

- State of Charge (SoC) interrogated \rightarrow higher starting SoC lowers $I_C/I_D/I_R$, lower SoC increases $I_C/I_D/I_R$
- Voltage administered during pulses → 16 V provides higher I_C/I_D/I_R vs. 14.8 V
- Rest period duration \rightarrow 20 h pre-qDCA rest provides slight improvement on I_c vs. 72 h

• We defined the concept of "DCA Memory" and explored three theories of its origin

- DCA magnitude is inextricably linked to the process which came before → the battery "remembers" what it just did
 - Measuring DCA post-discharge (ex. I_D) typically provide a 3-5X higher value than measuring post-charge (ex. I_C)
- 1. Local Electrolyte Effect as cause \rightarrow Pockets of low/high SG enable/limit charge reactions
- 2. Lead Sulfate Ripening as cause \rightarrow A hardening of crystals and passivation of their activity
- 3. Perturbation of Pb²⁺ as cause \rightarrow An expanded role for organics in Pb²⁺ diffusion and storage 4

STRUCTURES"

Continued in #515

BLACK DIAMOND

Continued in #512

502–1: Please rank the 3 proposed mechanisms in terms of largest contributor (1) to smallest contributor (3) towards the DCA Memory Effect:

1st Local Electrolyte Perturbations

2nd Lead Sulfate Ripening/Morphology

3rd Pb2+/Organic "Reserve Tanks"

> Lead Sulfate Ripening/Morphology

3rd Pb2+/Organic "Reserve Tanks"

4th Item 4

2nd

Ē

Mentimeter

Why Seek the Origin of DCA Memory, and How?

- The goal *is not* understanding the mechanism...
 - ... it is a step towards the goal
- The goal <u>is</u> harnessing the knowledge to make a battery perform like it just discharged, every charge
 - I_D >> I_C, always
 - The best batteries in BDS' experience have low $I_D:I_C$ (*)
 - And high magnitude of $\rm I_{C}$ and $\rm I_{D}$
 - How can a charged plate be structurally engineered to perform like a discharged plate?
- What tools can we use to reach our goals?
 - Smart, out-of-the-box engineering
 - Battery management system optimization
 - Careful review of structure-function relationships <

-...and Additives!!

502-2: In my experience with the following batteries designs, the ratio of Id/Ic is closest to:

M Mentimeter

Our Additive Addiction: Lead is Not Enough

• Historically, four additives were used in the Negative Active Mass (NAM), all of which diversified over time:

NAM Additive	Typical Loading% (wrt PbO)	Historical Usage	Contemporary Usage
Carbon	0.1-5.0	A pigment to visually differentiate positive and negative plates; not a performance additive	A hotly discussed and highly diversified performance additive offering functional gains across many applications
Organics	0.1-0.5	Added to the NAM by accident as leachate from wooden battery cases, lifecycle crashed without its presence during shift to plastic	Innovations led to optimized/modified natural products and more tailored prescription of those solutions in balance with other components
Barium Sulfate	0.5-2.0	Nucleation agent facilitating growth of lead sulfate of small size during discharge	Diversification of grades, which now include the nanoscale, to improve discharge performance, recover from discharge, and CCA
Fiber (Not Discussed Here)	0.01-x.xx	Added as a rheological paste strengthening agent during drying with no chemical or electrochemical performance inferred	Custom lengths/widths are prepared for various crystal compositions and end needs including long-term plate robustness in cycling

In the following slides, we explore modern NAM additives, their theorized mechanism of action, and their potential role in defining DCA Memory BLACK DIAMOND

6

STRUCTURES[™]

For DCA, Are Additives Deployed to the Right Plate?

- Reference electrode studies of DCA indicate a controlling role for the negative electrode
 - Polarization of the negative electrode is of a larger magnitude than the positive electrode

- Global research aimed at improving DCA magnitude or understanding DCA Memory has focused on NAM

Continued in #402

BLACK DIAMOND

STRUCTURES"

- Still, in some cases, the positive electrode is capable of dramatically limiting DCA performance
 - In BDS' experiments with full-scale 12 V batteries, PAM changes (NAM identical) can drive changes to DCA Magnitude

	EN DCA (A/Ah)	Paste SO ₄ :PbO Ratio (%)	Paste Density (g/mL)	[4BS] (%)	[3BS] (%)	Pore Area (m²/g)	Av. Pore Diameter (nm)
PAM 1	0.15	2.6	4.45	10.3	15.3	1.07	256
PAM 2	0.22	5.1	3.98	41.2	25.8	0.68	704

Structure-Function Relationships in Pb-Acid Battery

• Nature is governed by Structure/Function relationships; DCA performance and memory must be no different. Understanding/manipulating NAM STRUCTURE to provide the FUNCTION we desire is central to this Breakout:

Continued in #525 / #401

STRUCTURES"

- Small crystals (<100 nm) charge very efficiently since Pb²⁺ solubility is less limiting around them
- Medium (>100 nm) to large (>>100nm) crystals differ less in Pb²⁺ solubility, but can be "hard"/pacified or block pores
- Can we use additives to maintain smaller, uniform, reversible crystal morphology throughout life?

Pore Structure ←→ Acid Access + Utilization ←

• Typical NAM pore diameter is ~1 μ m which sterically hinders the growth of very large sulfates in the interior

- Tight pores present a mass transfer limitation for SO_4^{2-} and can result in basification if H⁺ diffuse out, forming α PbO
- Can we use additives to manufacture and maintain an experimentally defined "optimal" pore structure?

Surface Area +---> Reactivity

- Large, "sluggish" PbSO₄ have low surface area, providing less physical pace for electrochemistry / mass transfer
- High Pb surface area increases performance, but too high increases self-discharge
- Can we use additives to lock the structure of sponge Pb and $PbSO_4$ through life?

Carbon – **Basics**

- Variants
 - Carbon black, acetylene black, graphite, expanded graphite,
- **Loading Considerations**
 - 0.1-2% wrt PbO
 - Limited by paste processing concerns (additional water/lower density/hard to mix)
 - Limited by excessive hydrogen evolution driven by often high impurities and external surface area —
 - Offset with specific surface chemistry (ex. acidic), pre-adsorption of Pb, improvement of Pb/C contact ٠
- **Performance Effects (Varies by Product)**
 - Improved static/dynamic charge acceptance in multiple specifications resulting in improved microcycling/PSoC durability

Continued in #524

- CCA performance can be decreased due to adsorption of the system's organic component which can be balanced out —
- Increased water loss with some products due to impurities, surface area, or promotion of hydrogen evolution reaction

"Carbon is one of the significant 'levers' for increasing NAM charge performance, yet there is no strong consensus as to what carbon's role is" – Shane Christie, ArcActive

BLACK DIAMOND

STRUCTURES"

Carbon – Theories of Function (1/2)

Electronic Enhancement

- Carbon could act as capacitor, absorbing current during/after CHR, transferring to Pb soon after
 - Surface area ↑, Capacitance ↑
 - Would play a role in charging schemes resulting in rapid voltage changes when capacitance can build
- Carbon enhances utilization of the active mass in CHR and DCH through improved electronic conductivity
- Time constant not long enough to account for DCA
 Memory which can be on the order of weeks

A New Electroactive Surface

- Carbon provides a 2nd surface for Pb²⁺ deposition reactions expanding electrode capability
- Two roles: 1) Functions as capacitor in <5 s charge time and, 2) Nucleation site in >10 s charge time

BLACK DIAMOND

STRUCTURES[™]

Intimate contact required

Ref: Moseley, J., Rand. D. A. J., Davidson, A., Monahov, B. J. Energy Stor. 19 (2018) 272-290; Samuelis, ABC (2015)

Carbon – Theories of Function (2/2)

Ref: Furukawa, in Lead-Acid Battries for Future Automobiles (2017)

Diamond	Activated carbon	Graphite	
	Carbon blacks		
<i>sp</i> ³ 109.5°	Carbon fibres	120°	
sp ³ Sp ³	Glassy carbon	sn2	
sp ³	Carbon aerogels	sp ² sp ²	
sp ³ -hybridization	<i>sp³/sp²</i> combinations	sp ² -hybridization	
Insulator	'Semiconductor'	Semi-metal	

Physical Effects

- Carbon provides steric hindrance reducing sulfate size
- Increasing the porosity of the NAM to improve supply of electrolyte (possibly with "Electroosmotic pumping")
- Increasing tortuosity of acid path to bulk attenuates stratification (ex. UltraBattery capacitor)

- Alternative Mechanisms:
 - Intercalation of H⁺ in graphite, analogous to graphite's
 Li⁺ intercalation in li-Ion cells, to improve conductivity
 - Carbon as oxygen scavenger, reducing sulfation by replacing one use of PAM-supplied oxygen for another:
 - $\frac{1}{2}O_2 + Pb + H_2SO_4 \rightarrow PbSO_4 + H_2O$ = sulfation
 - 2 $O_1 + C \rightarrow CO_2$ = gas loss, carbon degradation

BLACK DIAMOND STRUCTURES[™]

Continued in #501/515

Nanomaterials – Basics

- Variants
 - MOLECULAR REBAR[®], Multi- or Single-walled carbon nanotubes, graphene
- Loading Considerations
 - 0.01-0.75% wrt PbO
 - Unformulated materials present handling/safety issues, high aggregation tendency
 - Non-purified forms prone to excessive hydrogen evolution driven by presence of residual catalysts and high surface area

Continued in #524

- Offset by purification techniques, high materials efficiency (low loading levels), and surface modifications
- Performance Effects (Varies by Product)
 - Improved dynamic charge acceptance in multiple specifications resulting in improved microcycling/PSoC durability
 - Enhanced material strength and robustness when uniformly incorporated
 - Combination of physical reinforcement and electrical performance improvement permits reduction in overbuilding
 - Enhanced CCA performance with some varieties

"...Nanomaterials... may be very promising due to their ordered structure, high chemical stability, and high intrinsic electrical conductivity" – Dr. Anjan Banjeree, Bar-Ilan University

BLACK DIAMOND

STRUCTURES"

Nanomaterials – Theories of Function

MOLECULAR REBAR® (NAM)

- Crystal packing rearrangement to provide:
 - Higher surface area
 - Thinner, more numerous pores (no density chang
- Strength reinforcement by bridging crystals —
- Steric hindrance and restriction of growth of PbSO₄
- May also pay a role in improving Pb²⁺ availability

Graphene Mechanism

- Some propose it merges organic + carbon capabilities: —
 - Improved electroactive surface area for adsorption/desorption of Pb²⁺ (charge transfer), similar to proposed for organics
 - Double layer capacitance and enhanced conductivity, similar to proposed for carbon

BLACK DIAMOND

STRUCTURES[™]

Ref: Yeung, RSC Adv.. (2015) 5, 71314; Kumar RSC Adv. (2014) 4, 36517

Organics – Basics

- Variants
 - Vanisperse(s), Indulin, Humic Acid, Kraftplex, Napthalene Sulfonates
- Loading Considerations
 - 0.1-0.5% wrt PbO
 - High loading provides enhanced CCA + lower H₂O loss, sacrificing charge acceptance
 - Low loading provides enhanced charge acceptance, sacrificing CCA and cycle life
- Performance Effects (Varies by Product)
 - Increased cycle life in most testing protocols and applications
 - Increased dynamic charge acceptance when used at minimal/optimal concentrations
 - Effects in high temperature cycling vary by variety, with some forms being less stable to heat
 - Overloading passivates lead surface with thick organic layer. Optimal loading should produce an incomplete monolayer.

Continued in #524

"Organics are a necessary evil. They are fundamental for long life and low water loss, yet they corrupt charge acceptance and can be difficult to balance with other additives" – Dr. Nanjan Sugumaran, Independent Consultant BLACK DIAMOND

STRUCTURES[™]

Organics – Theories of Function

• Surface Complexity Enhancing Agent

- Increases active surface area of the negative plate
- Creates complex, arborescent Pb structures
- Addresses surface simplification by favoring "tubiform excrescences", rather than monodirectional growth

Ref: Simon. Electrochemica Acta (1974) p739-743

Pb²⁺ Dispersing/Reservoir-Building Agent

- Bind and redistribute Pb²⁺, scattering it across surface to shepherd crystal growth complexity
- Binds Pb⁰/PbO/Pb²⁺ more effectively than PbSO₄
- Keeps [Pb²⁺] available to reaction, chemistry dependent

Ref: Ban. Journal of Power Sources. (2002) 107. p167-172; Mryvold Jornal of Power Soruces (2003) 117 p187

BLACK DIAMOND

STRUCTURES[™]

15

Barium Sulfate – Basics

- Variants
 - <0.1 μm , 0.1-0.5 μm , 0.02-0.08 μm
- Loading Considerations
 - 0.5-2.0% wrt PbO
 - Heavily application dependent, deep cycle batteries typically favoring more
- Performance Effects (Varies by Product)
 - Improved cyclability
 - Improved CCA recovery

Barium Sulfate – Theories of Function

• Lead Sulfate nucleation agent

- Isomorphous with certain habits of PbSO₄ (template)
- Lowers overpotential of PbSO₄ nucleation, easing its formation
- Not electroactive or dissolvable
- Necessity?
 - In cycling, or at least <98% SoC, PbSO₄ is present in higher quantities than BaSO₄ so the nucleation agent is already already present in the "natural" form
- Agglomeration problems with nanoBa?

Ref: Pavlov. J. Power Sources. (2010) 195 p4435

Wrap-Up and DCA/High Temperature Report Card

- Negative plates play key roles in defining DCA magnitude, but advanced designs can provoke high temp failure
- A diversification in the additive space aims to provide the industry with the tools it needs to stay competitive:

PAM Additive	Primary Effect(s)	Effect on DCA Magnitude	Effect on DCA Memory	Effect on High-Temperature Failure Modes
Carbon	Conductivity, Porosity	Increase	?	Neutral, some exacerbate failure
Nanomaterials	Morphology, Porosity	Increase	?	Some improve
Organics	Morphology	Decrease	?	Can reduce water loss
Barium Sulfate	Morphology	Can Increase	?	?

Global research collaborations can help define balance in these additives, understand DCA Magnitude/Memory origin, and move the industry forward

18

Honorable Mentions:

Titanium oxide: poor conductor that can still sterically hinder the lead sulfate Bismuth sulfide: HER reduction agent

502–3: Please place each NAM additive on the chart to reflect your understanding of its effects on each variable

Effect on DCA Magnitude M Mentimeter

Loading presentation