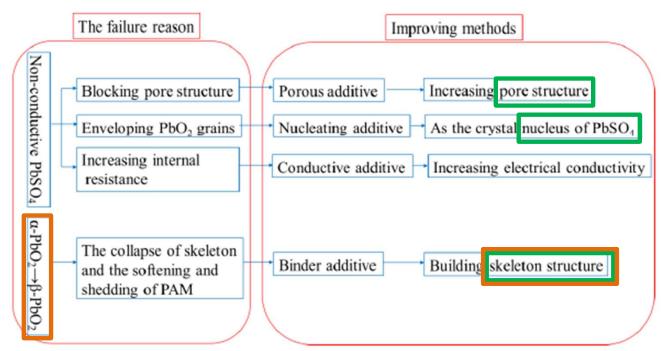
Positive Active Mass Additives

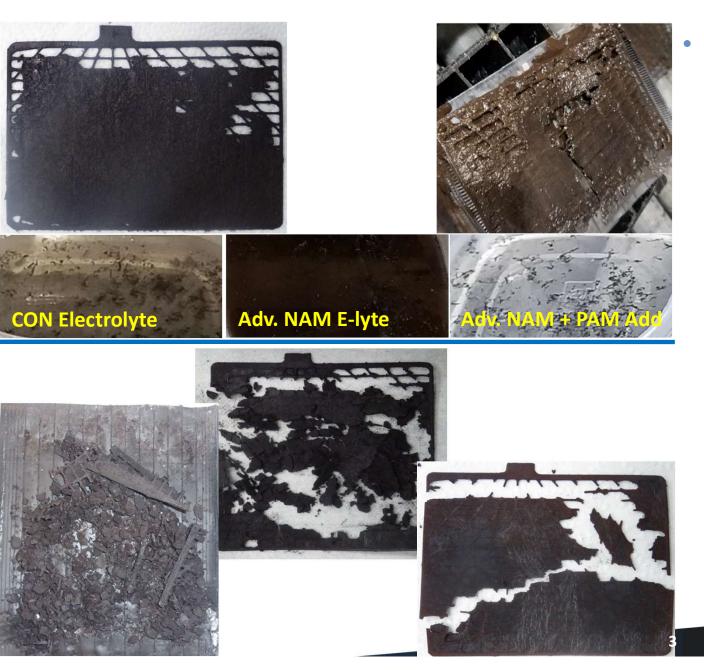
Types, Effects, and Mechanism

Dr. Paul Everill VP, Research + Development


Positive Plate Improvements Are Required

• PAM-related failures are intensifying in the field

- NAM failure mitigation puts more "pressure" on PAM
- Higher operating temperatures encourage corrosion
- H_2O loss / polarization due to Adv. NAM provoke failure
- Performance can be improved, from the active material perspective, using two general "levers":
 - Plate structure
 - Density, surface area, pore structure, corrosion layer
 - Plate composition
 - 3BS/4BS, α/β -PbO₂, PbSO₄


Continued in #401

 Here, we review additives which may help to control these "levers", and review their potential role in high temp durability and brake energy recuperation

Ref: Hao. Int. J. Electrochem. Sci. (2018) 13. p2329

Role of Positive Plate in High-Temp Durability

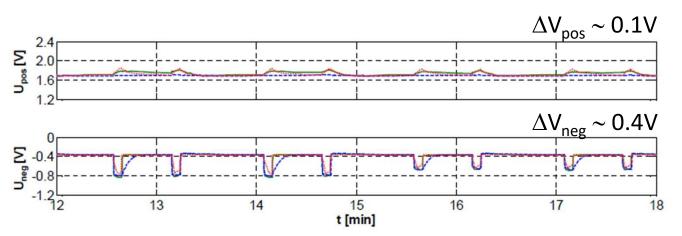
Role of the Positive Plate in High-Temp Durability

Material Shedding

- Can be related to poor crystal connections, swelling
- Can be related to poor grid-material contact
- Darkens electrolyte due to sloughed off material
- Results in capacity loss and failure through shorting, mossing, bridging, increased corrosion

Continued in #404

BLACK DIAMOND


STRUCTURES[™]

Corrosion

- Electrochemical degradation of the grid itself
- Related to poor, or imperfect, alloy composition
- Material can stay intact, but grid collapses
- Results in capacity loss and failure through grid/tab disconnect, full cell loss (-2 V), shorting, separator oxidation tears

Role of Positive Plate in Brake Energy Recuperation

PAM	EN DCA (A/Ah)	Paste SO ₄ :PbO Ratio (%)	Paste Density (g/mL)	[4BS] (%)	[3BS] (%)	Pore Area (m²/g)	Av. Pore Diameter (nm)	
1	0.15	2.6	4.45	10.3	15.3	1.07	256	
2	0.22	5.1	3.98	41.2	25.8	0.68	704	

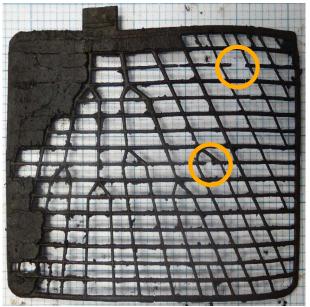
Ref: H. Budde-Meiwes, Doctoral Thesis, RWTH Aachen

Can PAM changes improve Dynamic Charge Acceptance?

- In some systems, yes, the positive plate can control
 Dynamic Charge Performance
- In BDS' experience with lower-tier, 12 V batteries, drastic PAM changes (with identical NAM plates) drive changes to DCA magnitude (+46%)
- So, why do we focus on NAM additives?
 - Polarization of the negative electrode is of a larger magnitude than the positive electrode
 - Suggests that electrode is being exercised more
 - PAM not typically materials limited (higher m² than NAM), but could be functionally limited (?)

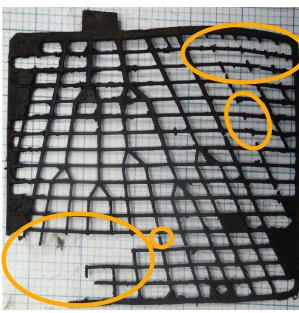
Effect of NAM Components on the PAM

INDIRECT ADDITIVE EFFECTS


Depolarizing NAM Agents

Industry has been Negative Plate-focused

- Charge Acceptance has been a dominant market driver for the last 10 years due to Start-Stop technology
- Industry research concentrated on NAM improvements since that electrode is typically charge limiting
- NAM advancements can increase the occurrence of positive grid corrosion and other PAM-centric failures
 - Seen heavily in current technical specifications
 - eg. SAE J2801, SAE J240, JIS 5301D LLE, others
 - H₂O loss-induced acid concentration speeds corrosion
 - High-temperature operation intensifies corrosion

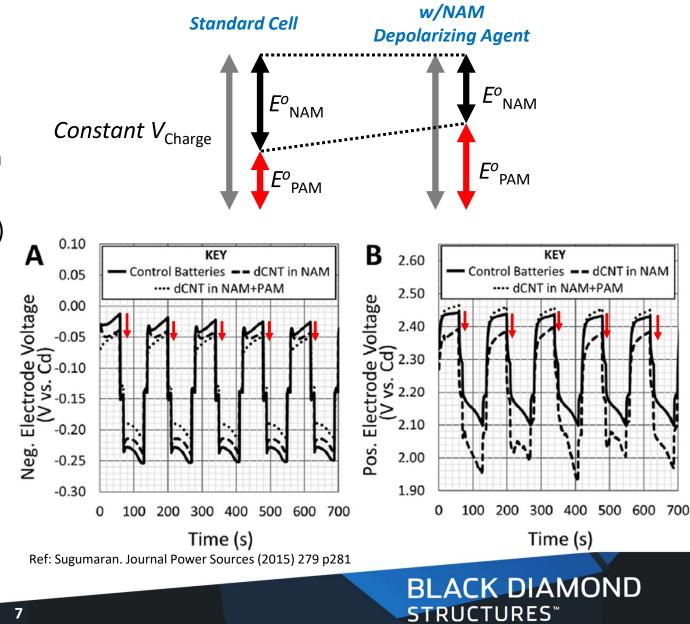

PAM Comparison Following 10 Weeks of nKLT (75 °C)

After Key Life Test, Plates are Dropped Once from 1m onto concrete

High Carbon Sample 95% Active Material Lost Intensified Grid Breaks (O)

Low Carbon Sample 80% Active Material Lost Few, Small Grid Breaks (O)

BLACK DIAMOND


STRUCTURES[™]

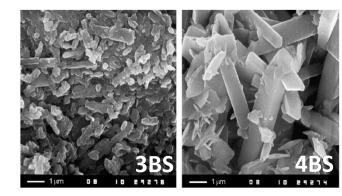
Ref: Everill. ABC 2019.

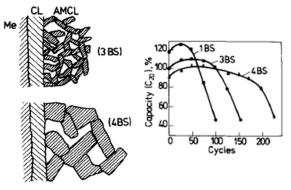
Depolarizing NAM Agents

- In Constant Voltage charges (>3s brake event):
 - A depolarized negative plate pushes the positive plate into a different potential window during CV charges
 - In some cases, it can increase utilization:
 - Higher initial capacity, improved capacity retention
 - Can sometimes lead to overworking, shedding
 - Faster shift from αPbO_2 (structural) to βPbO_2 (bulk)

- In Constant Current charges (<3s brake event):</p>
 - Depolarization of negative can still influence positive
 - Effects can be seen in reference electrode studies

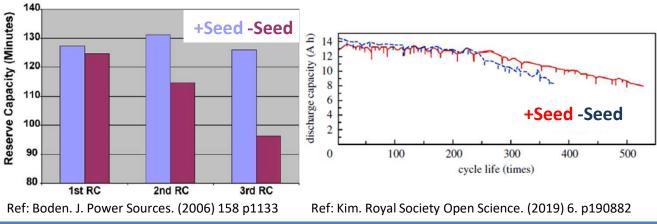
Effect of PAM Components


DIRECT ADDITIVE EFFECTS



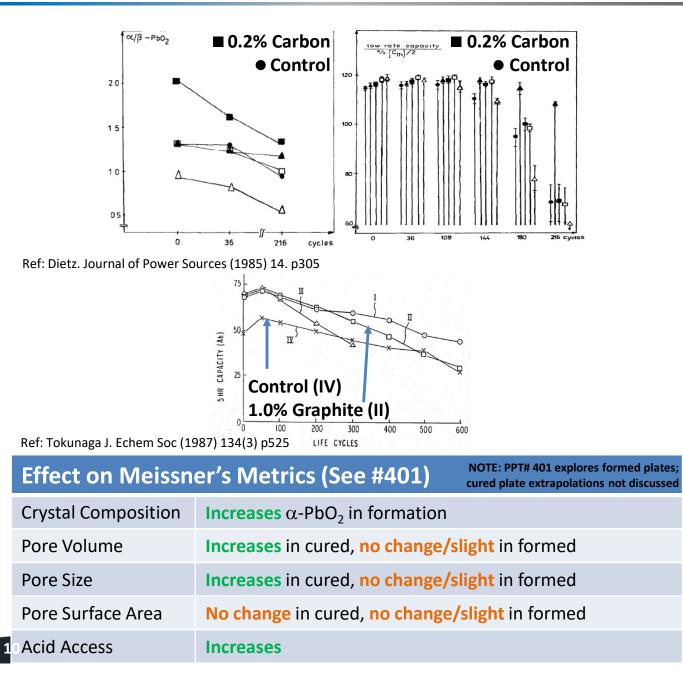
Tetrabasic Seed Crystal

Tetrabasic Lead Sulfate (4PbO·PbSO₄·H₂O, "4BS") is a large (>10 μm) crystal grown in specific conditions


- Provide strong foundation for active mass which, when formed, favor α -PbO₂ for structural reinforcement
- Low surface:volume ratio can complicate formation processes which fail to convert the crystal's inner core
- Low initial capacity, helped w/ \sim 25% Red Lead (Pb₃O₄)
- 4BS seed control conversion, lowering temp needed for growth, and producing uniform active structure
 - A templating/nucleation agent
- Claimed Performance Enhancements:
 - Improved initial capacity, and consistency through life
 - **HIGH TEMP:** Dependent on many variables
 - **DCA**: Can increase magnitude, no effect on memory
- Variants: 0.5-5.0 um crystal sizes, powder or suspension
- Loading Considerations: 0.5-2.0% wrt PbO

Ref: Pavlov. Lead-Acid Battery: Science and Technology. 2011

Ref: Pavlov. J. Power Sources. (1995) 53 p9

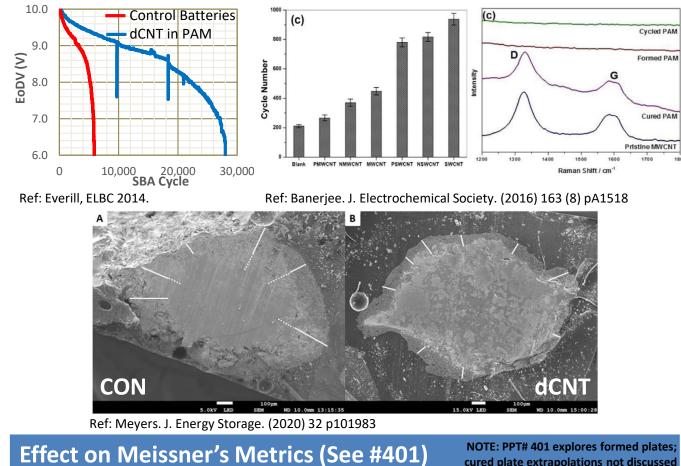

Effect on Meissner's Metrics (See #401)

NOTE: PPT# 401 explores formed plates; cured plate extrapolations not discussed

Crystal Composition	Increases 4BS% cured; Increases α PbO ₂ formed
Pore Volume	Increases vs. 3BS; Decreases vs. typical 4BS
Pore Size	Increases vs. 3BS; Decreases vs. typical 4BS
Pore Surface Area	Decreases vs. 3BS; Increases vs. typical 4BS
9 Acid Access	Increases vs. 3BS; Decreases vs. typical 4BS

Carbon

- Carbon is infrequently used in the positive active
 - Oxidative potential eventually converts material to CO₂
- Early work suggested improvement to electronic and ionic conductivity conveyed from intrinsic material properties, but later work suggested porosity enhancement through oxidation of the particles
- Claimed Performance Enhancements:
 - Altered formation, favoring αPbO_2
 - No significant benefits in some studies (small particles)
 - Improved capacity, cycle life in others (large particles)
 - HIGH TEMP: Can limit AM shedding
 - **DCA**: Unknown
- Variants: Carbon Black, Acetylene Black, Graphite
- Loading Considerations: 0.1-1.0% wrt PbO, affects paste density



Carbon Nanomaterial

- Some nanomaterials improve plate structure and battery performance with very low mass addition
 - Their application was earlier stalled by impurities, cost, aggregation tendency, and handling concerns
- Two theories of action:
 - 1. Stability towards oxidation and persistent inter-crystal connections resulting in conductivity improvements
 - 2. Uniform structural optimization that bolsters the plate structure and enhances the grid-material interface

Claimed Performance Enhancements

- Improved cycle life and capacity consistency
- Improved deep discharge performance
- HIGH TEMP: Some improve corrosion layer and mitigate shedding
- **DCA**: Some improve conductivity to support better rate
- Variants: MOLECULAR REBAR[®], Graphene, Single/Multiwall CNT
- Loading Considerations: 0.001-0.1% wrt PbO,

Crystal Composition	Decreases PbSO ₄ in cycled plate, can change α/β ratio
Pore Volume	No change
Pore Size	Decrease cured, Increases formed
Pore Surface Area	Increases cured, Decreases formed
Acid Access	Increases

Metal, Metal Salts

KEY: ↑ Increases ↓ Decreases – Not Mentioned

	Loading			Industry Adoption*	Effect on Meissner's Metrics (See #401)					
	(% wrt PbO)	Mechanism	Performance		Crystal Comp.	Pore Vol.	Pore Size	Pore Surf. Area	Acid Access	References
Bismuth (Bi)	0.05	Alters crystal morphology, like Sb but w/ lower rates of gassing + self DCH	Improved initial capacity in deep cycling	Zero	?	1	?	↑	1	1, 2, 10
Antimony (Sb, or SbSO ₄)	0.005-0.1	Alters crystal morphology, Arsenic can play a supporting role.	Improved cycle life, less O ₂ (Density must be >3.75 g/mL to stop - plating)	Very Low	?	1	?	1	1	3
Sodium (Na, or Na ₂ SO ₄)	0.01-0.05 M	Dissolves in acid increasing pore vol. Reduces 4BS size $(+ \alpha/\beta-PbO_2)$	Improved active material utilization, especially in concert with 4BS	Very Low	-	\downarrow	\downarrow	1	1	4, 5
Calcium (Ca, or CaSO ₄)	0.25-2	Believed to be a PbSO ₄ nucleation agent	Improved HRD voltage esp. cold temperatures, no effect to cycle life	Very Low	?	?	?	1	1	4, 6
Tin (SnSO₄)	0.1-2.0	Increases <i>n</i> in PbO _n around grid to suppress conversion of Pb grid to PbO _x	Mitigate PCL-1 failures and delay corrosion	Very Low	CL	-	-	-	-	7
Barium (BaSO ₄)	<0.1	4BS nucleation agent, pronounced shedding in non-compressed cells	Improved 4BS conversion, higher αPbO _{2,} improved cycle life.	Zero	4BS↑	1	1	\downarrow	1	8, 9

Ref:

1 - Lam. J. Power Sources (1998) 73 p36,

2 - Lam. J Power Sources (1999) 78 p139. 7 - Slavkov. J. Power Sources (2002) 112 p199

3 - Shiomi. US 6,284,411 B1 Patent (2001)

4 - Hao. Int. J. Electrochem. Sci. 13 (2018) 2329-2340

5 - Chen. J. Power Sources (2000) 90(2) p125

6 - Ramanathan. J. Power Sources (1991) 35 p83

8 - Dittman. J. Electrochem. Soc (1954) p533

9 - Atlung. J. Power Sources (1990) p131

10 - CSIRO / Pasminco Practice

12

*Dr. Everill's experience form >165 global manufacturers

BLACK DIAMOND

Metal Oxides

KEY: ↑ Increases ↓ Decreases – Not Mentioned

	Loading (% wrt PbO)	Mechanism	Performance	Industry Adoption*	Effect	on Me				
					Crystal Comp.	Pore Vol.	Pore Size	Pore Surf. Area	Acid Access	References
SnO₂ (Tin Oxide)	0.1-2.0	Alters PbO ₂ crystal morphology	Improves formation efficiency and initial capacity	Very Low	PbO₂ ↑	1	-	1	1	1, 2, 3
Sb₂O₃ (Antimony trioxide)	0.05-0.3	Improves active material- grid binding in Ca-alloy grids	Improved initial capacity, Improved corrosion resistance (PCL-1)	Near Zero	CL	1	-	1	1	4
Pb ₃ O ₄ (Red Lead)	20-30	Provides alternate chemical route to PbO ₂ (Pb ₃ O ₄ + $H_2O_4 \rightarrow PbO_2 + \beta PbSO_4$)	Improves formation efficiency and initial capacity, important w/4BS	High w/ 4BS Users	PbO₂ ↑	-	-	-	-	5
Ti₄O₇ (Titanium Oxide)	0.2-0.5	Increases the overpotential of the gassing reaction	Decreased H ₂ O loss, improvement in active material utilization	Near Zero	-	-	-	1	-	1
Diatomite (SiO ₂ ·nH ₂ O)	3.0	Increase in porosity with no change to mechanical strength or composition	Improved capacity and utilization	Near Zero	PbO₂ ↑	1	-	-	1	2
Bi₂O₃ (Bismuth Oxide)	0.02	Increase in porosity as the Bi dissolves and leaves pore structure behind	Improved initial capacity	Near Zero	PbO₂ ↑	1	-	-	1	2

*Dr. Everill's experience form >165 global manufacturers

Ref:

1 - Pavlov. Lead Acid Batteries (2011) p351

2 - Hao. Int. J. Electrochem. Sci. 13 (2018) 2329-2340

3 – Hariprakash. J. App. Electrochem (2004) 34 p1039'

4 – Zhou. Chinese J. of Power Sources (2009) 4 p291

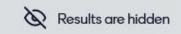
5 – Ferg J. Power Sources (2006) 155 p428

402-1: I apply, or have applied in the past, the following PAM additives:

Mentimeter

402-2: The following additives performed as marketed in my systems

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ο 0 0 0 0 0 4BS Seed **Red Lead** Calcium Diatomite Carbon s Nanomaterials Bismuth Antimony Sodium Tin Barium Titanium Compounds (Silicon Compounds Compounds Compounds Compounds Compounds Compounds Compounds)


Wrap-Up and DCA/High Temperature Report Card

- Positive plates can limit advanced automotive batteries due to shedding, corrosion, or as an inhibitor of DCA
- To alleviate these limitations, additives should be applied to target user-defined, optimal PAM structure:

PAM Additive	Primary Effect(s)	Effect on DCA Magnitude	Effect on DCA Memory	Effect on High-Temperature Failure Modes
Tetrabasic Seed	Morphology	Can Improve	?	Reduced shedding
Carbon	Conductivity, Porosity	?	?	?
Nanomaterials	Morphology, Porosity Corrosion Layer	?	?	Some reduce shedding, corrosion
Metal, Metal Salts	Morphology, Porosity	?	?	Some reduce corrosion
Metal Oxides	Morphology, Porosity, Conductivity	?	?	Some reduce corrosion, water loss

PAM additives are much less understood, studied, or available than NAM additives, which warrants further investigation

402-1: If you are interested in participating in any future research stemming from this PPT, please write your Name + Email here (Answers Hidden)

M Mentimeter