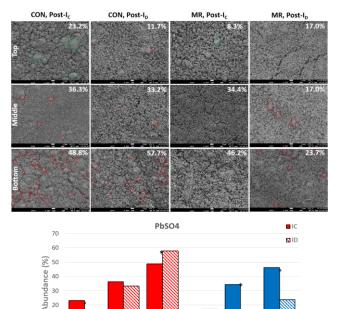
WORKGROUP 2B1: Global Collaboration to Understand The "DCA Memory" Effect

1) GOAL

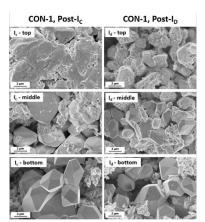

The EN-50342-6 Dynamic Charge Acceptance Test is a well-respected measurement of a battery's chargeability in 3 application-relevant modes: "lc", chargeability from a subsequent charge; "lb", chargeability from a subsequent discharge; and "lR", chargeability in a drive cycle. lb is always ~4X higher than lc, suggesting DCH history plays a role in performance. Several global teams sought to falsify the hypothesis that this "memory" effect was due to Ostwald Ripening.

2) METHODS

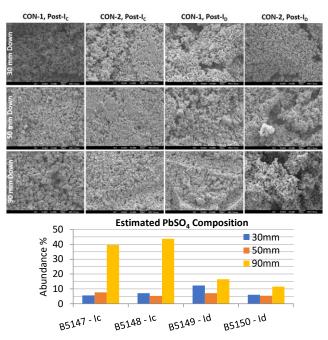
Labs used their own cell designs and the CBI Best Practices. Acid gravity was set to 1.28 sg. Labs used a modified EN-DCA which included a preamble (2*RC or up to 3*C₂₀) and standard C₂₀ DCH (Step #16). The duration of Step 25 was doubled to bring the cell to 80% SoC in I_c and I_b (normally, I_b is run @ 90%). Voltages were reduced 6X due to single-cell nature. NAM was extracted after each DCA_{pp} sequence (I_c / I_b) for materials analysis (Steps #21/27).

3) RESULTS

BLACK DIAMOND STRUCTURES, LLC

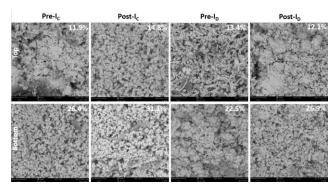


 $\vec{e}_{10} = \vec{e}_{10} + \vec{e}$


FINDINGS = $I_D/I_C \simeq 5.5$, strong AM stratification (PbSO₄ in red circles), crystal clusters post- I_C (green circles), I_D charging focused near tab, Molecular Rebar improved AM consistency after I_D . 500X MAG.

FRAUNHOFER ISC

FINDINGS = I_c showed larger PbSO₄ than I_D , bottom had larger crystals than the top, bottom/top difference more pronounced than I_c/I_D .



ARCACTIVE, LTD

FINDINGS = $I_D/I_c \sim 3-4$ ($I_c @80\%$, $I_D @90\%$), reference electrode indicated negative electrode limited, strong AM stratification especially post- I_c (PbSO₄ is larger, more obvious lower on the plate). 1000X MAG

EAST PENN MANUFACTURING

FINDINGS = Strong AM stratification in I_c and I_D , I_c is stratified the most, images corroborate XRD. MIP open to interpretation.

4) CONCLUSION

Ostwald ripening as the mechanism behind the DCA Memory Effect was unable to be quantitatively proven or disproven due to limitations in our techniques (only SEM, XRD, MIP) and failures identified in the DCA test itself.

The DCA instigates pronounced SG and AM stratification leading into the DCApp measurement which diminishes potential results 4X and leads to higher abundance and size of PbSO₄ at the bottom of the plate. Full recharge prior to ID eliminates stratification and PbSO₄ buildup, improving chargeability.

Alternative techniques and sub-surface analysis are required to pursue further.

1. AM, 2. Was 3. Stra 4. DCA 5. New

AM/H₂SO₄ stratification: cause or correlation of Memory?
 Was this a worthy experiment – Learnings? Continuation?

- 3. Stratification artificially lowered the heaviest weighted I_x ?
- DCA better on a shaking table / in the field? An artefact?
 New techniaues: Internal vs. external SEM and XRD?